combine/arctan
combine arctangent terms
Calling Sequence
Parameters
Description
Examples
combine(f, arctan)
combine(f, arctan, m)
f
-
any expression
m
the name 'symbolic'
The command combine(f, arctan) combines sums of arctangents in expressions by applying the following transformations:
arctanx+arctany=csgnx2+1xπ2x=1yarctanx+y−xy+1xy<1orcsgnx≠csgnyarctanx+y−xy+1+csgnxπotherwise
If the input is a difference of two arctangents arctan(x) - arctan(y) then the above transformations are applied to arctan(x) + arctan(-y) .
If the conditions required for the transformations cannot be determined by Maple, then the arctangents are not combined. If the optional argument symbolic is specified, and the conditions cannot be determined, then transformation arctanx+arctany=arctanx+y−xy+1 is applied regardless.
Note, that in order to determine whether the transformations rules can be applied, one must be able to write an expression in the form
a+barctanc±arctand .
This is not always easy to do so the code may fail to combine arctangent terms because of this.
f≔arctan1−I+arctan12+12I
f≔arctan1−I+arctan12+I2
combinef,arctan
π2
f≔arctan13+arctan15+arctan17+arctan18
π4
f≔arctan13+arctan14
arctan711
f≔3arctan13−2arctan14+arctan15
arctan427536
f≔aarctan13+aarctan14+barctan15
aarctan711+barctan15
combinearctanx+arctan1xassumingx::real
signumxπ2
f≔arctanx+arctany:
combinef
arctanx+arctany
combinef,arctan,symbolic
arctanx+y−xy+1
assume0<x,0<y,1≤xy
f=combinef,arctan
arctanx~+arctany~=arctanx~+y~−x~y~+1+π
assumex<0,0<y
arctanx~+arctany~=arctanx~+y~−x~y~+1
See Also
combine/trig
Download Help Document