Statistics
MillsRatio
compute the Mills ratio
Calling Sequence
Parameters
Description
Computation
Options
Examples
References
MillsRatio(X, t, options)
X
-
algebraic; random variable or distribution
t
algebraic; point
options
(optional) equation of the form numeric=value; specifies options for computing the Mills ratio of a random variable
The MillsRatio ratio computes the Mills ratio of the specified random variable at the specified point.
The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the Mills ratio is computed using exact arithmetic. To compute the Mills ratio numerically, specify the numeric or numeric = true option.
withStatistics:
Compute the Mills ratio of the beta distribution with parameters p and q.
MillsRatioΒp,q,t
1−0t<0tphypergeomp,1−q,1+p,tΒp,qpt<11otherwise0t<0tp−11−tq−1Βp,qt<10otherwise
Use numeric parameters.
MillsRatioΒ3,5,12
64105−8hypergeom−4,3,4,123
MillsRatioΒ3,5,12,numeric
0.138095238095238
Define new distribution.
T≔Distribution`=`PDF,t↦1π⋅t2+1:
X≔RandomVariableT:
CDFX,t
π+2arctant2π
MillsRatioX,t
1−π+2arctant2ππt2+1
Another distribution
U≔Distribution`=`CDF,t↦Ft,`=`PDF,t↦ft:
Y≔RandomVariableU:
CDFY,t
Ft
MillsRatioY,t
1−Ftft
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics[Computation]
Statistics[Distributions]
Statistics[RandomVariables]
Download Help Document