>

$\mathrm{with}\left(\mathrm{Finance}\right)\:$

Amortization table for a loan of 1000 units at interest rate of 10% per period with payments of 500 units
>

$\mathrm{amortization}\left(1000.00\,500.00\,0.10\right)$

From this you can see that there will be 3 payments, the last one being of 176 units.
>

$\mathrm{amortization}\left(1000.00\,500.00\,0.10\,\mathrm{output}=\mathrm{cost}\right)$

The cost of the loan is 176 units.
You can make payments to be of 500 units + the interest for that period:
>

$\mathrm{amortization}\left(1000.00\,\left(i\,\mathrm{interest}\right)\mapsto 500.00+\mathrm{interest}\,0.10\,\mathrm{output}=\mathrm{list}\right)$

$\left[\left[{0}{\,}{0}{\,}{0}{\,}{\mathrm{1000.00}}{\,}{1000.00}\right]{\,}\left[{1}{\,}{600.0000}{\,}{100.0000}{\,}{500.0000}{\,}{500.0000}\right]{\,}\left[{2}{\,}{550.000000}{\,}{50.000000}{\,}{500.000000}{\,}{0.}\right]\right]{,}{150.000000}$
 (3) 
There are now 2 payments, one of 600 units and one of 550 units. The cost of the loan is 150 units. Now, if you make quarterly payments of 150 units on a loan of 1000 units at a stated rate of 12%, the payments are increased yearly by 10 units. The amortization table is computed as follows:
>

$\mathrm{compute\_payment}\u2254\left(i\,\mathrm{interest}\right)\mapsto 150.00+10.00\cdot \mathrm{trunc}\left(\frac{i}{4}\frac{1}{4}\right)\:$

>

$\mathrm{amortization}\left(1000.00\,\mathrm{compute\_payment}\,\frac{\mathrm{effectiverate}\left(0.12\,4\right)}{4}\right)$

There were 8 payments altogether with a loan cost of 138 units. For obtaining just the first year, you can make use of the nperiods argument:
>

$\mathrm{amortization}\left(1000.00\,\mathrm{compute\_payment}\,\frac{\mathrm{effectiverate}\left(0.12\,4\right)}{4}\,\mathrm{nperiods}=4\right)$

It is also possible to display the amortization table as an embedded datatable with the output = embed option:
>

$\mathrm{amortization}\left(1000.00\,\mathrm{compute\_payment}\,\frac{\mathrm{effectiverate}\left(0.12\,4\right)}{4}\,\mathrm{nperiods}=4\,\mathrm{output}=\mathrm{embed}\right)$

${''amortizationtable0''}$
 (6) 