>

$\mathrm{with}\left(\mathrm{Groebner}\right)\:$

>

$f\u22545{x}^{3}y+{x}^{2}{w}^{2}t+5{x}^{3}yzt2xz{w}^{3}t+3{y}^{2}{w}^{3}t$

${f}{\u2254}{}{2}{}{t}{}{{w}}^{{3}}{}{x}{}{z}{+}{3}{}{t}{}{{w}}^{{3}}{}{{y}}^{{2}}{+}{5}{}{t}{}{{x}}^{{3}}{}{y}{}{z}{+}{t}{}{{w}}^{{2}}{}{{x}}^{{2}}{+}{5}{}{{x}}^{{3}}{}{y}$
 (1) 
With respect to the definitions above, we will compute the leading coefficient, leading monomial, and leading term of the polynomial f with respect to lexicographic order with x > y > z > w > t.
>

$\mathrm{LeadingCoefficient}\left(f\,\mathrm{plex}\left(x\,y\,z\,w\,t\right)\right)$

>

$\mathrm{LeadingMonomial}\left(f\,\mathrm{plex}\left(x\,y\,z\,w\,t\right)\right)$

${t}{}{{x}}^{{3}}{}{y}{}{z}$
 (3) 
>

$\mathrm{LeadingTerm}\left(f\,\mathrm{plex}\left(x\,y\,z\,w\,t\right)\right)$

${5}{}{t}{}{{x}}^{{3}}{}{y}{}{z}$
 (4) 
In releases of Maple prior to Maple 10, Groebner[leadmon] computed what is now returned by LeadingTerm and Groebner[leadterm] computed what is now returned by LeadingMonomial.
>

$\mathrm{leadcoeff}\left(f\,\mathrm{plex}\left(x\,y\,z\,w\,t\right)\right)$

>

$\mathrm{leadterm}\left(f\,\mathrm{plex}\left(x\,y\,z\,w\,t\right)\right)$

${t}{}{{x}}^{{3}}{}{y}{}{z}$
 (6) 
>

$\mathrm{leadmon}\left(f\,\mathrm{plex}\left(x\,y\,z\,w\,t\right)\right)$

${5}{}{t}{}{{x}}^{{3}}{}{y}{}{z}$
 (7) 