Overview of the LinearFunctionalSystems Package
Calling Sequence
Description
List of LinearFunctionalSystems Package Commands
Examples
References
LinearFunctionalSystems:-command(arguments)
command(arguments)
The LinearFunctionalSystems package is useful for solving the following types of problems.
Find polynomial solutions of a linear functional system of equations with polynomial coefficients.
Find rational solutions of a linear functional system of equations with polynomial coefficients.
Find formal power series solutions of a linear functional system of equations with polynomial coefficients.
Find the universal denominator of the rational solutions of a linear functional system of equations with polynomial coefficients
Transform a matrix recurrence system into an equivalent system with nonsingular leading or trailing matrix.
For a given linear functional system of equations, the main functionality of this package is to transform the given system into an equivalent system with a nonsingular leading or trailing matrix. The construction of this equivalent system can be solved by using the EG-elimination algorithm by S.A. Abramov.
Each command in the LinearFunctionalSystems package can be accessed by using either the long form or the short form of the command name in the command calling sequence.
The long form, LinearFunctionalSystems:-command, is always available. The short form can be used after loading the package.
The following is a list of available commands.
AreSameSolution
CanonicalSystem
ExtendRegularSolution
ExtendSeries
HomogeneousSystem
IsSolution
LogarithmicSolution
MatrixTriangularization
PolynomialSolution
Properties
Rank
RationalSolution
RegularSolution
SeriesSolution
UniversalDenominator
To display the help page for a particular LinearFunctionalSystems command, see Getting Help with a Command in a Package.
withLinearFunctionalSystems:
M≔Matrix2,4,−1,−1,n+1,0,−1,−1,0,n+1:
MatrixTriangularizationM,2,n,trail
−1−1n+10−1−10n+1,table,00,∅,∅
MatrixTriangularizationM,2,n,lead
−1−1n+10−n−2n+200,table,00,∅,∅
sys≔x+3x+6x+1x+5xy1x+1−x−1x+2x+3x+6x+1y1x−xx6+11x5+41x4+65x3+50x2−36y2x+6x+2x+3x+6x+1xy4x,x+6x+2y2x+1−x2y2x,x+6x+1x+5xy3x+1+x+6x+1x−1y1x−xx5+7x4+11x3+4x2−5x+6y2x−y3xx+6x+1x+5x+x+6x+1x⋅3x+3y4x,x+6y4x+1+x2y2x−x+6y4x:
vars≔y1x,y2x,y3x,y4x:
PolynomialSolutionsys,vars
0,0,_c1,0
RationalSolutionsys,vars
_c1x−1x+2x+4x+3,0,20x5_c2+200x4_c2+700x3_c2+1000x2_c2+5x_c1+480x_c2+4_c120xx+1x+2x+4x+3,0
sol≔SeriesSolutionsys,vars
sol≔x40320_c1−11621_c57150+Ox2,362880x_c2−362880_c2+Ox2,_c3+x362880_c4−92737_c542900+Ox2,_c5+Ox2
ExtendSeriessol,5
x40320_c1−11621_c57150+xx−1−40320_c1+448_c53575+xx−1x−220160_c1−2697_c5100100+xx−1x−2x−3−6720_c1+3617_c5800800+xx−1x−2x−3x−41680_c1−2923_c54804800+Ox6,362880x_c2−362880_c2−181440xx−1_c2+60480xx−1x−2_c2−15120xx−1x−2x−3_c2+3024xx−1x−2x−3x−4_c2+Ox6,_c3+x362880_c4−92737_c542900+xx−1−181440_c4+6937_c585800+xx−1x−260480_c4−27109_c51801800+xx−1x−2x−3−15120_c4+512_c5225225+xx−1x−2x−3x−43024_c4−40511_c5144144000+Ox6,_c5+Ox6
B≔Matrix4,4,x2+3x+1x−1x+2x+5x,26x3+29x2+8x−1+x5+9x4x+2x+5x+1,−x−1,−x−1x3+7x2+14x+9x+2x+5,x−1x+1x+5x,x−1x+12x+5,0,x−1x+5x+1,x−1x+5,x−1xx+5x+1,−x,−x3+3x2−5x−5x+5,−x−1x+5x,−x−1x+5x+1,1,x−1x+4x+5:
PolynomialSolutionB,x,difference
−x_c1,0,−x_c1+2_c1,_c1
RationalSolutionB,x,difference
−x6_c1+7x5_c1−109x4_c1+x4_c2+353x3_c1−3x3_c2+2268x2_c1−19x2_c2−840x_c1+7x_c2+720_c1−6_c2x2−1x+3x+4x,−4120_c1−_c2x+4x+2x2,−x5_c1+8x4_c1−105x3_c1+x3_c2−260x2_c1+2x2_c2+764x_c1−7x_c2+1272_c1−11_c2x+1x+2x+4x+3,x2_c1+6x_c1−112_c1+_c2x+4x+2
sol≔SeriesSolutionB,x,difference
sol≔x−5040_c1+1014645_c516+935265_c64−_c4+Ox2,1633536_c67+408384_c57+40320_c2+x−40320_c2−744003_c514−1488006_c67+Ox2,128835_c58+450765_c62+40320_c3+2_c4+x−128835_c58−450765_c62−40320_c3−_c4+Ox2,_c4+x5985_c62+6615_c58+Ox2
x−5040_c1+1014645_c516+935265_c64−_c4+xx−15040_c1−931485_c516−852105_c64+xx−1x−2−2520_c1+845985_c532+767865_c68+xx−1x−2x−3840_c1−248755_c532−223555_c68+xx−1x−2x−3x−4−210_c1+207641_c5128+184121_c632+Ox6,1633536_c67+408384_c57+40320_c2+x−40320_c2−744003_c514−1488006_c67+xx−1671238_c67+335619_c514+20160_c2+xx−1x−2−6720_c2−49584_c57−198336_c67+xx−1x−2x−31680_c2+21327_c514+42654_c67+xx−1x−2x−3x−4−336_c2−1740_c57−6960_c67+Ox6,128835_c58+450765_c62+40320_c3+2_c4+x−128835_c58−450765_c62−40320_c3−_c4+xx−167725_c58+228375_c62+20160_c3+xx−1x−2−6720_c3−25005_c58−78135_c62+xx−1x−2x−31680_c3+7275_c58+20295_c62+xx−1x−2x−3x−4−336_c3−861_c54−2100_c6+Ox6,_c4+x5985_c62+6615_c58+xx−1−5985_c62−6615_c58+xx−1x−2855_c52+1500_c6+xx−1x−2x−3−1005_c62−1215_c58+xx−1x−2x−3x−4321_c58+237_c62+Ox6
Abramov, S.A. "EG-Eliminations." Journal of Difference Equations and Applications, Vol. 5. (1999): 393-433.
See Also
module
UsingPackages
with
Download Help Document