Statistics
ProbabilityDensityFunction
compute the probability density function
Calling Sequence
Parameters
Description
Computation
Options
Examples
References
ProbabilityDensityFunction(X, t, options)
PDF(X, t, options)
X
-
algebraic; random variable or distribution
t
algebraic; point
options
(optional) equations; specify options for computing the probability density function of a random variable
The ProbabilityDensityFunction function computes the probability density function of the specified random variable at the specified point.
The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
By default, all computations involving random variables are performed symbolically (see option numeric below).
For more information about computation in the Statistics package, see the Statistics[Computation] help page.
The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.
numeric=truefalse -- By default, the probability density function is computed using exact arithmetic. To compute the probability density function numerically, specify the numeric or numeric = true option.
inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the PDF. By specifying inert or inert=true, Maple will return these unevaluated.
mainbranch - returns the main branch of the distribution only.
withStatistics:
Compute the probability density function of the beta distribution with parameters p and q.
ProbabilityDensityFunctionΒp,q,t
0t<0tp−11−tq−1Βp,qt<10otherwise
Use numeric parameters.
ProbabilityDensityFunctionΒ3,5,12
10564
ProbabilityDensityFunctionΒ3,5,12,numeric
1.640625000
Define new distribution.
T≔Distribution`=`PDF,t↦1π⋅t2+1:
X≔RandomVariableT:
PDFX,u
1πu2+1
PDFX,0
1π
CDFX,u
π+2arctanu2π
Use the inert option with a new RandomVariable, Y.
Y≔RandomVariableDistribution`=`CDF,u↦π+2⋅arctanu2⋅π
Y≔_R3
PDFY,t
1t2+1π
PDFY,t,inert
ⅆⅆtπ+2arctant2π
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics[Computation]
Statistics[Distributions]
Statistics[RandomVariables]
Download Help Document