BatchNormalizationLayer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

DeepLearning

  

BatchNormalizationLayer

  

create batch normalization layer

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

BatchNormalizationLayer(dim, opts)

Parameters

dim

-

positive integer

opts

-

one or more options as specified below

Options

• 

center : truefalse

  

If true, the learned offset beta will be added to the normalized tensor. The default is true.

• 

epsilon : numeric

  

Specifies a small real number number to be added to the variance to avoid division by zero. Default is 0.01.

• 

inputshape : list of integers

  

Shape of the input Tensor, not including the batch axis.

  

With the default value auto, the shape is inferred. If inference is not possible, an error is issued.

  

This option need only be specified when this layer is the first in a Sequential model.

• 

momentum : numeric

  

Specifies the momentum for the moving average. Default is 0.99.

• 

scale : truefalse

  

If true, the learned scale factor gamma will be multiplied by the normalized tensor. The default is true.

Description

• 

The BatchNormalizationLayer(dim, opts) command creates a batch normalization neural network layer.

• 

This function is part of the DeepLearning package, so it can be used in the short form BatchNormalizationLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[BatchNormalizationLayer](..).

Details

• 

The implementation of BatchNormalizationLayer uses tf.keras.layers.BatchNormalization from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.BatchNormalization for more information.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

modelSequentialDenseLayer3,BatchNormalizationLayer2

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7fef0a2b2950>

(2)

model:-Compile

Compatibility

• 

The DeepLearning[BatchNormalizationLayer] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

DeepLearning Overview

 


Download Help Document