Irreduc - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Irreduc

inert irreducibility function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Irreduc(a)

Irreduc(a, K)

Parameters

a

-

multivariate polynomial

K

-

RootOf

Description

• 

The Irreduc function is a placeholder for testing the irreducibility of the multivariate polynomial a. It is used in conjunction with mod and modp1.

• 

Formally, an element a of a commutative ring R is said to be "irreducible" if it is not zero, not a unit, and a=bc implies either b or c is a unit.

• 

In this context where R is the ring of polynomials over the integers mod p, which is a finite field, the units are the non-zero constant polynomials. Hence all constant polynomials are not irreducible by this definition.

• 

The call Irreduc(a) mod p returns true iff a is "irreducible" modulo p. The polynomial a must have rational coefficients or coefficients from a finite field specified by RootOf expressions.

• 

The call Irreduc(a, K) mod p returns true iff a is "irreducible" modulo p over the finite field defined by K, an algebraic extension of the integers mod p where K is a RootOf.

• 

The call modp1(Irreduc(a), p) returns true iff a is "irreducible" modulo p. The polynomial a must be in the modp1 representation.

Examples

Irreduc2mod7

false

(1)

Irreduc2x2+6x+6mod7

false

(2)

Irreducx4+x+1mod2

true

(3)

aliasα=RootOfx4+x+1:

Irreducx4+x+1,αmod2

false

(4)

Factorx4+x+1,αmod2

x+αα2+xx+α+1α2+x+1

(5)

See Also

AIrreduc

Factor

irreduc

isprime

mod

modp1

RootOf

 


Download Help Document