Duffing ODEs
Description
Examples
The general form of the Duffing ODE is given by:
Duffing_ode := diff(y(x),x,x)+y(x)+epsilon*y(x)^3 = 0;
Duffing_ode≔ⅆ2ⅆx2yx+yx+εyx3=0
See Bender and Orszag, "Advanced Mathematical Models for Scientists and Engineers", p. 547. The solution of this type of ODE can be expressed in terms of elliptic integrals, as follows:
withDEtools,odeadvisor
odeadvisor
odeadvisorDuffing_ode
_2nd_order,_missing_x,_Duffing,_2nd_order,_reducible,_mu_x_y1
dsolveDuffing_ode
yx=c__2JacobiSN2ε+4x2+c__1−2c__22ε−ε−2,c__2−ε+2εε+2−2c__22ε−ε−2
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document