Divergence - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[VectorCalculus]

  

Divergence

  

compute the divergence of a vector field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Divergence(F)

Divergence(c)

Parameters

F

-

(optional) vector field or Vector-valued procedure; specify the components of the vector field

c

-

(optional) specify the coordinate system

Description

• 

The Divergence(F) calling sequence computes the divergence of the vector field F.  This calling sequence is equivalent to Del·F and DotProduct(Del, F).

• 

If F is a Vector-valued procedure, the default coordinate system is used. The default coordinate system must be indexed by the coordinate names.

  

Otherwise, F must be a Vector with the vectorfield attribute set, and it must have a coordinate system attribute that is indexed by the coordinate names.

• 

If F is a procedure, the returned object is a procedure. Otherwise, the returned object is an expression.

• 

The Divergence(c) calling sequence returns the differential form of the divergence operator in the coordinate system specified by c, which can be given as:

  

* an indexed name, e.g., sphericalr,φ,θ

  

* a name, e.g., spherical; default coordinate names will be used

  

* a list of names, e.g., r,φ,θ; the current coordinate system will be used, with these as the coordinate names

• 

The Divergence() calling sequence returns the differential form of the divergence operator in the current coordinate system.  For more information, see SetCoordinates.

Examples

withStudentVectorCalculus:

To create a vector field, use the Student[VectorCalculus][VectorField] command.

FVectorFieldx2,y2,z2

DivergenceF

2x+2y+2z

(1)

Del·F

2x+2y+2z

(2)

·F

2x+2y+2z

(3)

DotProductDel,F

2x+2y+2z

(4)

Divergencex,y,zsinx,cosy,tanz

x,y,zcosxsiny+1+tanz2

(5)

To display the differential form of the divergence operator:

Divergence

xVF 1x,y,z+yVF 2x,y,z+zVF 3x,y,z

(6)

SetCoordinatescylindricalr,θ,z:

Divergence

rrVF 1r,θ,z+θVF 2r,θ,z+zrVF 3r,θ,zr

(7)

Divergences,φ,w

ssVF 1s,φ,w+φVF 2s,φ,w+wsVF 3s,φ,ws

(8)

Divergencespherical

rr2sinφVF 1r,φ,θ+φrsinφVF 2r,φ,θ+θrVF 3r,φ,θr2sinφ

(9)

Divergencesphericalα,ψ,γ

αα2sinψVF 1α,ψ,γ+ψαsinψVF 2α,ψ,γ+γαVF 3α,ψ,γα2sinψ

(10)

To display the divergence of an arbitrary vector-valued function (r,theta) -> <f(r,theta),g(r,theta)> in the polar coordinate system:

SetCoordinatespolarr,θ

polarr,θ

(11)

Divergencer&comma;θfr&comma;θ&comma;gr&comma;θ

r&comma;&theta;&rarr;fr&comma;&theta;&plus;rrfr&comma;&theta;&plus;&theta;gr&comma;&theta;r

(12)

See Also

Student[VectorCalculus]

Student[VectorCalculus][Curl]

Student[VectorCalculus][Del]

Student[VectorCalculus][DotProduct]

Student[VectorCalculus][Laplacian]

Student[VectorCalculus][Nabla]

Student[VectorCalculus][SetCoordinates]

Student[VectorCalculus][Vector]

Student[VectorCalculus][VectorField]