>
|

|
Example 1.
First initialize the jet space for 2 independent variables and 2 dependent variables and prolong it to order 4.
>
|
|
Define 2 vector fields X1 and Y1.
E1 >
|
|
| (2.1) |
E1 >
|
|
| (2.2) |
Compute the generalized Lie bracket of X1 and Y1.
E1 >
|
|
| (2.3) |
We show how this result is obtained. First prolong X1 to the order of the coefficient in Y1, namely 2. Apply the prolonged vector field to the coefficient of Y1.
E1 >
|
|
![prX1 := u[1, 2, 2, 2]^2*D_u[]+2*u[1, 2, 2, 2]*u[1, 1, 2, 2, 2]*D_u[1]+2*u[1, 2, 2, 2]*u[1, 2, 2, 2, 2]*D_u[2]+(2*u[1, 1, 2, 2, 2]^2+2*u[1, 2, 2, 2]*u[1, 1, 1, 2, 2, 2])*D_u[1, 1]+(2*u[1, 2, 2, 2, 2]*u[1, 1, 2, 2, 2]+2*u[1, 2, 2, 2]*u[1, 1, 2, 2, 2, 2])*D_u[1, 2]+(2*u[1, 2, 2, 2, 2]^2+2*u[1, 2, 2, 2]*u[1, 2, 2, 2, 2, 2])*D_u[2, 2]](/support/helpjp/helpview.aspx?si=6556/file05756/math134.png)
| (2.4) |
E1 >
|
|
| (2.5) |
Next prolong Y1 to the order of the coefficient in X1, namely 4. Apply the prolonged vector field to the coefficient of Y1.
E1 >
|
|
![prY1 := u[2, 2]*D_u[]+u[1, 2, 2]*D_u[1]+u[2, 2, 2]*D_u[2]+u[1, 1, 2, 2]*D_u[1, 1]+u[1, 2, 2, 2]*D_u[1, 2]+u[2, 2, 2, 2]*D_u[2, 2]+u[1, 1, 1, 2, 2]*D_u[1, 1, 1]+u[1, 1, 2, 2, 2]*D_u[1, 1, 2]+u[1, 2, 2, 2, 2]*D_u[1, 2, 2]+u[2, 2, 2, 2, 2]*D_u[2, 2, 2]+u[1, 1, 1, 1, 2, 2]*D_u[1, 1, 1, 1]+u[1, 1, 1, 2, 2, 2]*D_u[1, 1, 1, 2]+u[1, 1, 2, 2, 2, 2]*D_u[1, 1, 2, 2]+u[1, 2, 2, 2, 2, 2]*D_u[1, 2, 2, 2]+u[2, 2, 2, 2, 2, 2]*D_u[2, 2, 2, 2]](/support/helpjp/helpview.aspx?si=6556/file05756/math158.png)
| (2.6) |
E1 >
|
|
| (2.7) |
The difference between term1 and term2 gives the coefficient of the generalized Lie bracket of X1 and Y1.
E1 >
|
|
| (2.8) |
Example 2.
The generalized Lie bracket is not restricted to evolutionary (vertical) generalized vector fields.
E1 >
|
|
| (2.9) |
E1 >
|
|
| (2.10) |
E1 >
|
|
| (2.11) |
Example 3.
The generalized Lie bracket for a pair of 1st order evolutionary vector fields coincides with the Jacobi bracket. For example:
E1 >
|
|
E1 >
|
|
E1 >
|
|
| (2.12) |
E1 >
|
|
| (2.13) |
E1 >
|
|
| (2.14) |