JetCalculus[PushforwardTotalVector] - pushforward a total vector field by a transformation
Calling Sequences
PushforwardTotalVector(Phi)
Parameters
Phi - a transformation between two jet spaces
|
Description
|
|
•
|
Let E -> M and F -> N be two fiber bundles with dim(M) = m and dim(N) = n and let Phi: J^k(E) -> J^l(F) be a transformation. Let (x^i), i = 1, ... m be a system of local coordinates on M and let (y^a), a = 1, ... n be a system of local coordinates on N. Let F^a = y^a(Phi) be the y^a components of the map Phi--these are functions on J^k(E). Then the total Jacobian of Phi is the m x n matrix J^a_i = [D_i F^a] where D_i denotes the total derivative with respect to x^i. The pushforward of the total vector field X =X^iD_i on M is the total vector Y=Y^aD_a , where =Y^a =J^a_i X^i.
|
•
|
The command PushforwardTotalVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form PushforwardTotalVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-PushforwardTotalVector(...).
|
|
|
Examples
|
|
>
|

|
Example 1.
First initialize several different jet spaces over bundles E1 -> M1, E2 -> M2, E3 -> M3. The dimension of the base spaces are dim(M1) = 2, dim(M2) = 1, dim(M3) = 3.
Define a transformation Phi1: J^2(E1) -> E2 and compute its total Jacobian (a 1 x 2 matrix).
E3 >
|
|
| (2.1) |
E1 >
|
|
| (2.2) |
E1 >
|
|
| (2.3) |
E1 >
|
|
![totX := a*D_x+b*D_y+(b*u[2]+a*u[1])*D_u[]+(a*u[1, 1]+b*u[1, 2])*D_u[1]+(a*u[1, 2]+b*u[2, 2])*D_u[2]+(a*u[1, 1, 1]+b*u[1, 1, 2])*D_u[1, 1]+(a*u[1, 1, 2]+b*u[1, 2, 2])*D_u[1, 2]+(a*u[1, 2, 2]+b*u[2, 2, 2])*D_u[2, 2]+(a*u[1, 1, 1, 1]+b*u[1, 1, 1, 2])*D_u[1, 1, 1]+(b*u[1, 1, 2, 2]+a*u[1, 1, 1, 2])*D_u[1, 1, 2]+(a*u[1, 1, 2, 2]+b*u[1, 2, 2, 2])*D_u[1, 2, 2]+(a*u[1, 2, 2, 2]+b*u[2, 2, 2, 2])*D_u[2, 2, 2]](/support/helpjp/helpview.aspx?si=6565/file05766/math152.png)
| (2.4) |
E1 >
|
|
![(u[0, 1, 2]*a+u[0, 2, 2]*b)*D_t+(u[0, 1, 2]*a+u[0, 2, 2]*b)*v[1]*D_v[]+(u[0, 1, 2]*a+u[0, 2, 2]*b)*v[1, 1]*D_v[1]+(u[0, 1, 2]*a+u[0, 2, 2]*b)*v[1, 1, 1]*D_v[1, 1]+(u[0, 1, 2]*a+u[0, 2, 2]*b)*v[1, 1, 1, 1]*D_v[1, 1, 1]](/support/helpjp/helpview.aspx?si=6565/file05766/math159.png)
| (2.5) |
E2 >
|
|
| (2.6) |
E1 >
|
|
| (2.7) |
E1 >
|
|
| (2.8) |
E1 >
|
|
| (2.9) |
|
|