>
|

|
Example 1.
We define 4 different Cartan matrices and calculate their standard forms and root type.
>
|
![CM1 := Matrix([[2, -1, 0, -1, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 2, 0, -1], [-1, 0, 0, 0, 2, 0], [0, 0, -1, -1, 0, 2]])](/support/helpjp/helpview.aspx?si=6613/file05788/math79.png)
|
| (2.1) |
>
|
![CM2 := Matrix([[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, -1], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 2, 0], [0, 0, -1, -1, 0, 2]])](/support/helpjp/helpview.aspx?si=6613/file05788/math86.png)
|
| (2.2) |
>
|
![CM3 := Matrix([[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -2, 0], [-1, -1, 0, 2, 0, 0], [-1, 0, -1, 0, 2, 0], [0, -1, 0, 0, 0, 2]])](/support/helpjp/helpview.aspx?si=6613/file05788/math93.png)
|
| (2.3) |
>
|
![CM4 := Matrix([[2, -2, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 2, -1], [0, 0, 0, -1, -1, 2]])](/support/helpjp/helpview.aspx?si=6613/file05788/math100.png)
|
| (2.4) |
Here are the standard forms, permutation matrices and root types.
>
|
|
| (2.5) |
>
|
|
| (2.6) |
>
|
|
| (2.7) |
>
|
|
| (2.8) |
alg >
|
|
| (2.9) |
For each example the second output is a permutation matrix which transforms the given input Cartan matrix to its standard form.
>
|
|
| (2.10) |
>
|
|
| (2.11) |
>
|
|
| (2.12) |
>
|
|
| (2.13) |
Example 2.
We define a 21-dimensional simple Lie algebra and calculate its root type.
>
|

|
Initialize this Lie algebra.
>
|
|
Find a Cartan subalgebra.
alg >
|
|
| (2.14) |
Find the root space decomposition.
alg >
|
|

| (2.15) |
Find the roots, positive roots and a choice of simple roots.
alg >
|
|

| (2.16) |
alg >
|
|
| (2.17) |
alg >
|
|
Find the Cartan matrix.
alg >
|
|
| (2.18) |
Transform the Cartan matrix to standard form. Here we use the second calling sequence. The command CartanMatrixToStandardForm now returns a permuted set of simple roots for which the Cartan matrix will be in standard form.
alg >
|
|
| (2.19) |
Check the result by re-calculating the Cartan matrix with respect to the permuted set of roots. We get the standard form immediately.
alg >
|
|
| (2.20) |
The root type of our 21-dimensional Lie algebra is