Query[RootSpaceDecomposition] - check that a table of roots and root spaces gives a root space decomposition for a semi-simple Lie algebra with respect to given Cartan subalgebra
Calling Sequences
Query( )
Parameters
CSA - a list of vectors in a Lie algebra, defining the Cartan subalgebra of a semi-simple Lie algebra
RSD - a table, defining a root space decomposition of a Lie algebra
options - the keyword argument output = "root"
|
Description
|
|
•
|
With output = "root", this query will return the root if the equations fail.
|
|
|
Examples
|
|
>
|

|
Example 1.
Check the root space decomposition for a 10-dimensional Lie algebra.
Here is the Lie algebra data structure.
>
|

|

| (2.1) |
Initialize the Lie algebra.
alg >
|
|
| (2.2) |
Define a subalgebra and check that it is a Cartan subalgebra.
alg >
|
|
| (2.3) |
>
|
|
| (2.4) |
Define a table of roots and root spaces and check that it gives a root space decomposition.
alg >
|
![RSD := map(evalDG, table([[2*I, 0] = e8-I*e9-e10, [2*I, 2*I] = e2-I*e3-e4-I*e5-e6+I*e7, [-2*I, 2*I] = e2+I*e3-e4-I*e5+e6+I*e7, [0, 2*I] = e2+e4-I*e5-I*e7, [-2*I, 0] = e8+I*e9-e10, [2*I, -2*I] = e2-I*e3-e4+I*e5+e6-I*e7, [0, -2*I] = e2+e4+I*e5+I*e7, [-2*I, -2*I] = e2+I*e3-e4+I*e5-e6-I*e7]))](/support/helpjp/helpview.aspx?si=7179/file07664/math162.png)
|

| (2.5) |
alg >
|
|
| (2.6) |
|
|