The PDE
is known to be integrable in
steps if
.
>
|
|
| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
| (5) |
>
|
|
![u = (1/1440)*((x+y)^3*_F1[x, x, x]+(x+y)^3*_F2[y, y, y]-12*(x+y)^2*_F1[x, x]-12*(x+y)^2*_F2[y, y]+(60*x+60*y)*_F1[x]+(60*x+60*y)*_F2[y]-120*_F1(x)-120*_F2(y))/(x+y)^3](/support/helpjp/helpview.aspx?si=8704/file02506/math173.png)
| (6) |
For
, Laplace returns NULL since the default number of iterations is 5.
>
|
|
| (7) |
>
|
|
To obtain the solution in this example use the optional argument numberofiterations.
>
|
|
![u = (1/100800)*((x+y)^4*_F1[x, x, x, x]+(x+y)^4*_F2[y, y, y, y]-20*(x+y)^3*_F1[x, x, x]-20*(x+y)^3*_F2[y, y, y]+180*(x+y)^2*_F1[x, x]+180*(x+y)^2*_F2[y, y]+(-840*y-840*x)*_F1[x]+(-840*y-840*x)*_F2[y]+1680*_F1(x)+1680*_F2(y))/(x+y)^4](/support/helpjp/helpview.aspx?si=8704/file02506/math201.png)
| (8) |
We analyze here the case
to show some of the details of the method. We define a sequence of three PDEs,
,
and
. We wish to solve
. The PDEs
and
are generated by the method of Laplace. We also define three maps which we denote by
,
and
. These are also prescribed by the method of Laplace.
>
|
|
| (9) |
>
|
|
| (10) |
>
|
|
| (11) |
>
|
|
| (12) |
>
|
|
| (13) |
>
|
|
| (14) |
Let's show that if
is a solution to
, then
is a solution to
.
>
|
|
| (15) |
>
|
|
| (16) |
>
|
|
| (17) |
Also, if
is a solution to
, then
is a solution to
.
>
|
|
![u = (1/2)*(x+y)^2*((_F1[x, x]+_F2[y, y])/(2*x+2*y)-2*(_F1[x]-_F2[y]+(x+y)*_F2[y, y])/(2*x+2*y)^2-2*(-_F1[x]+(x+y)*_F1[x, x]+_F2[y])/(2*x+2*y)^2+8*((x+y)*_F1[x]+(x+y)*_F2[y]-2*_F1(x)-2*_F2(y))/(2*x+2*y)^3)](/support/helpjp/helpview.aspx?si=8704/file02506/math313.png)
| (18) |
>
|
|
| (19) |
Finally, if
is a solution to
, then
is a solution to
.
>
|
|
![sol[C] := w(x, y) = (x+y)*_F2[y, y, y]/(2*x+2*y)-4*(_F1[x]-_F2[y]+(x+y)*_F2[y, y])/(2*x+2*y)^2+8*((x+y)*_F1[x]+(x+y)*_F2[y]-2*_F1(x)-2*_F2(y))/(2*x+2*y)^3+2*((_F1[x]-_F2[y]+(x+y)*_F2[y, y])/(2*x+2*y)-2*((x+y)*_F1[x]+(x+y)*_F2[y]-2*_F1(x)-2*_F2(y))/(2*x+2*y)^2)/(x+y)](/support/helpjp/helpview.aspx?si=8704/file02506/math337.png)
| (20) |
>
|
|
| (21) |
Now, remarkably, we start with the zero solution to
, integrate the equation
to find
and apply
to find
:
>
|
|
| (22) |
>
|
|
| (23) |
So this is the solution to
>
|
|
| (24) |
>
|
|
| (25) |
A similar sequence of PDEs and transformations can be constructed to find a solution depending on an arbitrary function of y.