Gegenbauer ODEs
|
Description
|
|
•
|
The general form of the Gegenbauer ODE is given by the following:
|
>
|
Gegenbauer_ode := (x^2-1)*diff(y(x),x,x)-(2*m+3)*x*diff(y(x),x)+lambda*y(x)=0;
|
| (1) |
|
where m is an integer. See Infeld and Hull, "The Factorization Method". The solution of this type of ODE can be expressed in terms of the LegendreQ and LegendreP functions:
|
|
|
Examples
|
|
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
|
|
See Also
|
|
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear, sym_Fx, linear_sym, Bessel, Painleve, Halm, Gegenbauer, Duffing, ellipsoidal, elliptic, erf, Emden, Jacobi, Hermite, Lagerstrom, Laguerre, Liouville, Lienard, Van_der_Pol, Titchmarsh; for other differential orders see odeadvisor,types.
|
|